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Abstract

This paper focuses on activity retrieval from a video
query in an imbalanced scenario. In current query-by-
activity-video literature, a common assumption is that all
activities have sufficient labelled examples when learning
an embedding. This assumption does however practically
not hold, as only a portion of activities have many exam-
ples, while other activities are only described by few ex-
amples. In this paper, we propose a visual-semantic em-
bedding network that explicitly deals with the imbalanced
scenario for activity retrieval. Our network contains two
novel modules. The visual alignment module performs a
global alignment between the input video and fixed-sized
visual bank representations for all activities. The semantic
module performs an alignment between the input video and
fixed-sized semantic activity representations. By matching
videos with both visual and semantic activity representa-
tions that are of equal size over all activities, we no longer
ignore infrequent activities during retrieval. Experiments
on a new imbalanced activity retrieval benchmark show the
effectiveness of our approach for all types of activities.

1. Introduction

This paper investigates the problem of activity retrieval
given a video as example. In current literature, activity re-
trieval is more often framed as a classification task [19], a
localization task [13], or as a retrieval-by-text problem [8].
For the less common task of activity retrieval by video, sev-
eral works have shown that activities can be retrieved di-
rectly from a user-provided query [5, 7, 33, 38, 39]. A stan-
dard assumption however is that the activities form a closed
set, i.e. they assume a fixed set of activities, each with many
training videos. In practice, most activities will have few
examples. Without an explicit focus on such activities, they
will be ignored in favour of activities with many examples.
In this work, we focus on learning balanced video represen-
tations of activities for retrieval, regardless of whether they
have many or few examples.

Learning with imbalanced data is an active research
topics for various visual tasks, including image classifica-
tion [22, 46], image segmentation [2, 20], and object de-

+ +
++

+

+ +

+ +
+
++

+

+
Activities with few examples

Activities with many examplesVisual Alignment Semantic Alignment

+

+

Prototype Center Video Activity Sample+

+
+ +

+
Visual Feature Space Semantic Feature Space

Figure 1: Our motivation. We aim at retrieving activities by an
activity video query. The training set is composed of activities
with many examples and activities with few examples. We propose
a visual-semantic alignment to balance the retrieval performance
between base and novel classes.

tection [28]. A central theme in these works is to either
make classes with few examples more prominent, or switch
to a setting where all classes have an equally-sized rep-
resentation, e.g. using memory banks [23, 45] or proto-
types [24, 37]. Here, we take inspiration from existing im-
balanced tasks for the problem of imbalanced activity re-
trieval from video queries. We seek to introduce two align-
ment modules to match the activity feature regardless of
whether they have many or few examples, see Figure 1.
Different from current works, we do so by using both vi-
sual and semantic prototypes, where we emphasize the im-
portance of a global alignment with respect to all activities.
This allows us to better focus on equally-sized activity rep-
resentations during training, which in turn results in a more
balanced retrieval.

As a first contribution in this work, we introduce a new
task about video query by activity in the wild and empha-
size the importance of performance balance between the ac-
tivities with many examples and activities with few exam-
ples. Second, we introduce a visual-semantic embedding
network for retrieval by a video query. The network ex-
tends the standard classification loss in deep networks with
two novel modules. The visual alignment module maintains
a visual bank with equal space for each activity. The rep-
resentation of an input video is globally aligned with the
visual bank representations of all activities to obtain a loss
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that disregards the amount of examples available for each
activity. The semantic alignment module performs a simi-
lar global alignment and loss, but between the input video
and video-independent semantic representations of activi-
ties such as word embeddings. These modules explicitly
target the problem of imbalance in video dataset. Third, we
reorganized the ActivityNet dataset [3] to emulate an im-
balanced retrieval dataset, along with new data splits and
example sampling. we perform extensive evaluation and
analyses to examine the workings of our approach for im-
balanced activity retrieval. Lastly, we show our ability on
video clips [25] and moments [8].

2. Related work
2.1. Video retrieval

For video retrieval, one common direction is to retrieve
videos by a textual query [13, 10, 14, 25, 27, 29, 40, 44].
Hendricks et al. [13] propose a network that localizes text
queries in videos using local and global temporal video rep-
resentations. Hendricks et al. [14] further propose to model
the context as a latent variable to bridge the gap between
videos and textual queries. Beyond video retrieval, a num-
ber of recent works have investigated localized retrieval
from text queries. Notably, Gao et al. [10] and Miech et
al. [25] jointly model text and video clips in a shared space
to obtain fixed-length local videos clips as retrieval output.
Similar endeavours have been proposed to retrieve local-
ized video moments from untrimmed datasets given a text
query [27]. In this work, we also extend the retrieval be-
yond videos only to clips and moments, but do so by using
an input video as query, rather than text.

For activity retrieval by query video, current works are
generally concerned with an efficient matching setup be-
tween query and test videos. Examples include retrieval us-
ing hashing [39] and retrieval using quantized video repre-
sentations [5]. A common starting assumptions is that the
activities to retrieve have ample training examples to learn
such an efficient matching. In this work, we challenge this
assumption and propose a network is retrieve both activities
with many examples and activities with few examples from
a query video.

2.2. Learning with imbalanced data
When dealing with frequent classes (base classes [11])

and infrequent classes (novel classes [11]), a persistent is-
sue is overfitting to the base classes. Transfer learning to
novel classes provides a way to boost the performance on
novel classes, although this is paired a catastrophic forget-
ting problem on base classes [35]. Meta-learning is simi-
larly focused on improving generalization to novel classes,
e.g. through a few steps of fine-tuning [9, 34]. However,
these methods only consider the generalization on novel
classes while ignoring the performance of base classes [23].
We aim to achieve a balance between both.

To attain such a balance, early work attempted to use a
single example of the novel class to adapt classifiers from
similar base classes using hand-crafted features [1]. Learn-
ing with imbalanced classes has since actively been re-
searched in image classification [22, 46], image segmen-
tation [2, 20], and object detection [28]. Bharath et al. [11]
for example tackle the imbalance problem by hallucinating
additional training examples for rare novel classes. As an
extension of these works, we explore the balancing of base
and novel classes for the problem of activity retrieval by a
video example.

3. Visual-Semantic Embedding Network

We aim to learn video representations for activity re-
trieval, where the task is to retrieve videos of the same ac-
tivity given a query video. Let {(x(i), y(i))}Ni=1 be a set of
N activity videos, where x is a video of T frames describ-
ing an activity y ∈ Y . Our goal is to learn an embedding
function f(·) ∈ RC such that two different videos x(i) and
x(j) of the same activity y are close in the embedding space.

In large collections of activities, there usually exists an
imbalance in the number of examples per activity. Follow-
ing Hariharan and Girshick [11], we denote activities with
many examples as the base classes and activities with few
examples as the novel classes. Formally, Y is then split into
Ybase and Ynovel, with Ybase ∩ Ynovel = ∅. Having an im-
balanced training set causes the embedding function f(·) to
be geared towards Ybase in the evaluation phase. As a con-
sequence, this induces a poor retrieval performance for the
under-represented classes Ynovel. To alleviate this issue, we
propose two alignment modules to preserve the visual and
semantic representations of all activities.

First, we describe how to learn activity representations
for all classes with a simple classification network (Sec-
tion 3.1). Second, we introduce two alignment modules to
better handle novel classes. We propose a visual alignment
module to preserve the activity representations over time
(Section 3.2), and a semantic alignment module to enforce
activity representations to be semantically meaningful (Sec-
tion 3.3). Finally, we show how to train and evaluate the
overall model (Section 3.4). Figure 2 illustrates the pro-
posed Visual-Semantic Embedding Network.

3.1. Action representations

To learn video representations of activities, we opt for
a frame-level convolutional network (ConvNet) as an em-
bedding function. Working at the frame-level rather than
at the video level (e.g. with 3D convolutions) offers more
flexibility at the evaluation phase. In this work, frame-level
representations enable us to perform localized retrieval, e.g.
retrieval of video clips [25] or video moments [8].

We extract the embedding representation for every frame
xt and simply average them over time to obtain a video-



Frame-level
ConvNet

Temporal
pooling

Dense
layer Classification loss

Frame-level
ConvNet

Frame-level
ConvNet

Semantic
alignment

Visual
alignment

Semantic alignment loss

Visual alignment loss

Visual bank

Semantic bank

weight lifting

xt−1

xt

xT

z

input video x
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level representation z ∈ RC :

z =
1

T

T∑
t=1

f(xt). (1)

The embedding representation is then further projected
on a label space for classification. The probability of class
c ∈ Y given an embedding representation z is:

pA(y = c|z) = exp(−Wc · z)∑
k∈Y exp(−Wk · z)

, (2)

whereW is the learnable parameter of the linear projection.

3.2. Visual alignment
While a standard classification embedding uses exam-

ples of all activities, the loss is in practice dominated by
activities with many examples. In an effort to balance base
and novel activity representations, we first focus on a visual
alignment between all activities. Let V ∈ RK×C denote a
visual bank matrix consisting of features representations of
dimension C for every activity y ∈ Y . The size of the bank
then corresponds to K = |Y| activities. The idea of the
visual bank is to obtain a single prototypical representation
for every activity. Hence, all activities are treated equally,
regardless of the number of examples available for training.
For a new activity embedding z of activity y, we update the
visual bank V through a convex combination of the current
embedding representation z and the corresponding entry in
V followed by an `2 normalization:

Vy = α
z

‖z‖2
+ (1− α)Vy,

Vy = Vy/‖Vy‖,
(3)

where α controls the amount of update in the visual bank.
The visual bank is initialized to zero when training.

Building upon such visual banks, we propose to align the
representations of different activities. For this purpose, we
rely on the attention mechanism from the non-local opera-
tor [41]. Compared to the original non-local block, we aim
to capture the relation between different prototypical repre-
sentations rather than spatial [41, 16] or temporal [41, 42]
relations. The structure of the visual alignment module is
illustrated in Figure 3.

Let GA denote a global alignment operator between the
visual bank representation of one activity in V , i.e. and
GA : (R1×C ,RK×C) 7→ R1×C . When compared to the
prototypes in the visual bank, the aligned representation
z? = GA(Vc, z) can then be used to provide the probability
of class c:

pV(y = c|z) =
exp

(
− d(z?, Vc)/τ

)∑
k∈Y exp

(
− d(z?, Vk)/τ

) , (4)

where τ is the temperature of the softmax function and d is
the Euclidean distance.

3.3. Semantic alignment

We additionally leverage word embeddings of activity
names as a prior information. A semantic representation of
an activity encapsulates relations amongst all pairs of ac-
tivity classes. We use this information to additionally align
activity representations towards such semantic knowledge.
We denote φ(y) ∈ RW as the word embedding of the ac-
tivity y. Let S ∈ RK×W be the semantic bank which com-
piles the word embedding φ(y) of all K activities. For the
semantic alignment, we simply opt for a multilayer percep-
tron g(·). Similar to the visual alignment, a probability for
class c can be derived after aligning the representation z
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with the semantic activity embedding:

pS(y = c|z) =
exp

(
− d(g(z), Sc)/τ

)∑
k∈Y exp

(
− d(g(z), Sc)/τ

) , (5)

Compared to the visual bank, the semantic bank remains
fixed during training. We initialize the semantic bank from
an existing word embedding (e.g. word2vec [26]).

3.4. Optimization

Training the overall network amounts to minimizing the
cross-entropy loss function for all three components over
the training set:

L = − log(pA)− λV log(pV )− λS log(pS), (6)

where λV and λS are trade-off hyper-parameters. Once the
network has been trained, we extract the video-level repre-
sentations z followed by an `2 normalization for all videos
in the gallery set. Similarities among videos are then mea-
sured with the Euclidean distance.

Table 1: VR-ActivityNet statistics for video retrieval. C0−100

are base classes with many examples, C100−200 are novel classes
with few examples. Some distractors with irrelevant content are
constructed to simulate the real-life retrieval scenario in the testing
phase.

train validation test
Base C0−100 6095 1000 3597

Novel C100−120 100 200 -
C120−200 400 - 2800

#distractor - - 573
Total 6595 1200 6970

4. Experimental Setup

Implementation details We employ ResNet-18 [12]
as a backbone network with weights pre-trained on Ima-
geNet [6]. Fine-tuning is done by the Adam [21] optimizer
on one Nvidia GTX 1080TI. We set the learning rate to
1e−4 with a weight decay of 1e−5 for 16k iterations and re-
duce the learning rate to 1e− 5 after 8k iterations. We use a
batch size of 16. The trade-off hyper-parameters λV , λS are
set to 1 by cross-validation and the convex coefficient α of
the visual bank update is set to 0.9. Three video frames are
extracted per second, resulting in an average of 32 frames
per activity video. Every frame is randomly cropped and
resized to 112 × 112. We use ELMo [32] with 1,024 di-
mension as our default word embedding method. We use
PyTorch [30] for implementation and the Faiss [17] library
to measure video similarities.

VR-ActivityNet We reorganize ActivityNet1.3 [3] for
our video retrieval and called the reorganization VR-
ActivityNet. As our method aims at evaluating the perfor-
mance of base classes and novel classes, we split the 200
activity labels into 100 base classes (C0−100) and 100 novel
classes (C100−200). We also divide the dataset into train-
ing, validation, testing set. The validation set is trying to
evaluate the balance performance between the C0−100 and
C100−120. Similarly, the testing set is designed to evaluate
the balance performance between theC0−100 andC120−200.
Detailed activity splits are shown in the supplementary file.

We split 10,024 untrimmed long videos from Activi-
tyNet training set into trimmed meaningful activity seg-
ments and randomly generate a number of meaningless dis-
tractor segments. We then formulate the training and vali-
dation set of VR-ActivityNet. We utilize 4,926 untrimmed
long videos from the ActivityNet validation-set to generate
the trimmed segments of our testing set in VR-ActivityNet.
The number of activity videos per subset in VR-ActivityNet
is shown in Table 1. For novel classes in the training data,
only 5 samples per novel class are accessible. For validation
and testing data, the sample number from base and novel
classes are roughly equivalent. All 6970 trimmed activity
videos, except the 573 distractors, are used for retrieval.



When a trimmed activity video acts as a query, the remain-
ing videos act as the gallery.

Evaluation metrics. For video retrieval, we consider
the mean average precision (mAP) both on base classes and
novel classes. We also compute the harmonic mean (H) be-
tween the mAP of base classes and novel classes to evaluate
the balance between base and novel class performance.

5. Results
In the experiments, we first perform a series of ablation

studies and comparisons in our proposed approach. Second,
we perform further analyses to gain insight into the problem
and our solution. Third, we show the ability of our model
to perform retrieval of video clips and moments.

5.1. Video retrieval experiments

Ablation: Visual alignment. We first investigate our
visual alignment module for imbalanced activity retrieval.
In Table 2a, we show the results for the baseline setting
which only uses a cross-entropy loss on a linear projection
of the video representations, as well as the inclusion of the
module. We observe an improvement of 6.2 percent point
(p.p.) for base classes and 1.9 p.p. for novel classes. Hence,
for both frequent and infrequent activities, the module pro-
vides a benefit.

To understand why the visual alignment module works,
we investigate the discriminative abilities of activities with
and without the use of the module. Ideally, prototypes
should be well separated to distill discriminative informa-
tion in the embedding space. To measure the scattered-
ness of prototypes, we calculate the `2 distance of every
pair of classes within base classes (C0−100), novel classes
(C100−200), and the overall (C0−200). The visual bank in
the baseline is maintained by the Equation 3 without the
constraint from Equation 4. We compare the scatteredness
of the visual activity proposals with and without the use of
the visual alignment module. The results are shown in Ta-
ble 2b. The scatteredness is consistently higher with our
module, making all activities more unique which in turn
leads to a more discriminative retrieval.

Ablation: Semantic alignment. For the semantic align-
ment module, we investigate its effect using four different
word embedding methods. The results are shown in Ta-
ble 3a using word2vec [26], ELMo [32],GloVe [31], and
fasttext [18]. For all word embedding methods, the multi-
layer perceptron in semantic alignment module is kept the
same except for the last layer. We find that all word em-
beddings provide an improvement over the setting with the
baseline and our visual alignment module. For base classes,
word2vec is slightly preferred, while fasttext is slightly pre-
ferred for novel classes. Overall, ELMo provides a balance
between base and novel classes and we will use this word
embedding for further experiments.

Having a semantic bank offers another benefit, namely

Table 2: Ablations on the visual alignment module.

(a) Visual module. Both base and novel classes ben-
efit from the module comapred to the baseline.

method base novel H
(mAP) (mAP)

w/o visual 25.76 16.28 19.95
w/ visual 31.99 18.17 23.18

(b) Scatteredness. The module works because
activities are distinguished well from each other.

method base novel overall
baseline 0.84 0.90 0.87
+visual 1.19 1.17 1.18

Table 3: Ablations on the semantic alignment module.

(a) Word embeddings. Adding a semantic prior pro-
vides an improvement, regardless of the word embed-
ding.

method base novel H
(mAP) (mAP)

baseline+visual 31.99 18.17 23.18
+word2vec [26] 33.31 18.73 23.97
+ELMo [32] 32.42 19.26 24.16
+GloVe [31] 32.59 19.28 24.23
+Fasttext [18] 32.36 19.44 24.29

(b) Retrieval result in various activity taxonomy hierar-
chy. Level-1 contains 6 super classes, level-2 contains 38
super classes. The mAP is evaluated on the overall classes.

method level-1(6 -cls) level-2(38-cls)
(mAP) (mAP)

baseline+visual 22.41 20.35
+semantic 23.14 21.76

an enhanced retrieval performance for different levels of the
activity taxonomy. We show that this is the case by utiliz-
ing the ActivityNet taxonomy [3] and evaluate the mAP for
both the parent classes of the activities and the grandparent
classes. The former contains 38 categories, while the latter
contains 6 categories. Table 3b shows that our method is
able to provide improved scores for broader activity cate-
gories, highlighting that the proposed alignment results in a
semantically more coherent retrieval.

Comparison with other methods. Using our two mod-
ules, we perform a comparative evaluation to three baseline
retrieval approaches. The first baseline serves as a starting
point. We use the network used in this work but only pre-
trained on ImageNet [6] to obtain video representations by
averaging their frames. Query and candidate videos are then



Table 4: Comparison with other methods. Our approach is pre-
ferred over both internal and external baselines, since our modules
explicitly give equal importance to base and novel classes.

base novel H
(mAP) (mAP)

ImageNet [6] 9.18 13.02 10.76
Triple loss [15] 24.47 16.48 19.70
Margin loss [43] 25.84 17.36 20.76
baseline 25.76 16.28 19.95
w/ our modules 32.42 19.26 24.16

matched using the Euclidean distance. As result in Table 4
shows, the low scores indicate the difficulty of the task. In-
terestingly, the off-the-shelf baseline doesn’t suffer from an
imbalance performance between the base classes and novel
classes. This confirms the fact that when fine-tuning, rep-
resentations of videos then tend to be more discriminative
towards the base classes as they are more frequent.

Table 4 also shows the consequence of imbalanced fine-
tuning for two accepted approaches in retrieval, namely
the triplet loss [15] and the margin loss[43] optimized on
top of the same video representations as for our approach.
Both approaches obtain a boost in base mAP and a smaller
improvement in novel mAP. Both the sampling-based loss
baselines and our baseline setup do not explicitly cater to
novel classes, resulting in similar scores for the harmonic
mean. Our proposed approach performs favorably com-
pared to all baselines, both for base and for novel classes.
Our harmonic mAP is respectively 13.4, 4.5, 3.4, and 4.2
percent point higher than the baselines. We conclude that
our formulation is preferred for activity retrieval regardless
of whether they have many or few examples to train on.

5.2. Video retrieval analyses
We perform three analyses to gain insight into the im-

balanced activity retrieval problem and into our approach.
Increasing the number of samples. First, we study

the effect of the number of samples per novel class dur-
ing training in Figure 4. We find that even when one novel
class sample is provided, our method can distill knowledge
from limited provided supervision. As the number of exam-
ples for novel classes increases, the gap with the baseline
also increases, highlighting that our balanced formulation
also helps for many examples. We also study the effect of
the number of activity videos per query during the testing
phase. When using more than one query video, we average
the features of all queries before retrieval. Figure 5 shows
that a consistent gain can be collected when increasing the
number of query videos, which shows our method benefits
from having multiple videos as a query.

Robustness to data splits. As generalization over new
splits is not necessarily achieved in the presence of novel
classes [4, 36], we evaluate our proposed model on two
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Figure 4: Effect of the number of samples per novel class. With
our modules, the improvement gap increases with more examples
per novel activity. Our balanced optimization is not only beneficial
for rare activities, but also for more frequent ones.
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Figure 5: Effect of the number of query videos per retrieval.
We gradually increase the number of queries from 1 to 5. Our
approach is effective for both the standard and multi-shot scenario.

other data splits. Table 5 shows the results for the two
following settings: (B120, N80) and (B80, N100), where
B denotes the number of base classes and N the number
of novel classes. The consistent improvements across these
new splits indicate that our approach is not tuned to specific
splits and can work whether we have many or few infre-
quent activities.

Qualitative analysis. Intuitively, not all activities bene-
fit from the inclusion of our visual and semantic alignments
for balancing activities. In Figure 6, we show which classes
benefit and suffer the most after applying the two align-
ment modules. We select the 5 easiest and 5 hardest classes
from the base and novel classes respectively. For the novel
classes, gains are important for fine-grained activities with
a salient object, such as decorating the Christmas tree or
carving jack-o-lanterns. For the base classes, gains are im-
portant for sports activities. Indeed, a fine-grained under-
standing is required to differentiate among these activities
and having both alignment modules helps to separate them.
We observe that our approach suffers for multiple sports ac-



Table 5: More dataset splitting case. We evaluate on two dif-
fent class label splittings: (B120, N80) and (B80, N120). Note
that the original dataset splitting is (B100, N100). Our method is
consistent over three different dataset splits.

base novel H
(mAP) (mAP)

(B120, N80)
baseline 22.72 13.41 16.86
baseline+visual 28.15 14.72 19.33
baseline+visual+semantic 29.38 14.91 19.78
(B80, N120)
baseline 27.39 14.74 19.16
baseline+visual 33.14 17.14 22.59
baseline+visual+semantic 33.85 17.63 23.18

5 0 5 10 15 20 25
mAP(%) Gain
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Javelin throw

Using the pommel horse
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Using the balance beam
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Starting a campfire
Wakeboarding
Longboarding

Playing ice hockey
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List of 5 easiest and 5 hardest classes.
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Novel

Figure 6: The gain and loss analysis. We pick out the 5 easiest
and 5 hardest classes from base and novel classes respectively. The
x-axis is the relative gain in percentage.

tivities with few examples, showing the direct downside of
the boost for sports activities with many examples, as they
will become a more likely retrieval candidate given a query.

Figure 7 also presents successful and failure cases. For
the two success cases, our method can tackle various back-
ground distractors to extract essential video information.
For the failure case of cutting the grass, our method is dis-
tracted by e.g. the tree in the bungee jumping example and
by the highly-similar activity mowing the lawn. For the
failure case of brushing teeth, the context information to
other activities is very similar, while small key objects such
as cigarette, ice cream, shaver are ignored by our method.
Having object information could further boost the retrieval
performance.

Table 6: Clip retrieval evaluation for clips of 4, 6, and 8 sec-
onds. We find favourable results for all clip lengths, especially
when videos are longer.

clip-duration base novel H
(mAP) (mAP)

4 seconds
Margin loss [43] 14.06 10.10 11.76
baseline 13.38 10.33 11.66
our method 17.62 12.85 14.86
6 seconds
Margin loss [43] 14.80 10.94 12.58
baseline 13.62 10.76 12.03
Our method 18.19 13.36 15.40
8 seconds
Margin loss [43] 15.23 11.32 12.99
baseline 13.96 10.99 12.30
our method 18.65 13.75 15.83

Table 7: Performance on Moment Retrieval. Our method can
perform favorably compared with our baseline.

base novel H
(mAP) (mAP)

Margin loss [43] 7.06 5.66 6.28
baseline 8.44 7.03 7.67
Our method 9.14 7.15 8.02

5.3. Clip and moment retrieval

Beyond retrieving videos, our approach is also suitable
for retrieving video clips and video moments, both of which
have recently gained traction. In a retrieval context, video
clips denote local video segments of a fixed length [25],
while video moments denote localized segments marking
the duration of the activity in a whole video [13].

Clip retrieval. For clip retrieval, we set the fixed dura-
tion to 4, 6, and 8 seconds. All videos are split into fixed-
length clips, where a clip is positive if its temporal during
lies within the boundaries of the activity. The retrieval is
performed over all individual clips.

We show clip retrieval results on the same dataset as
video retrieval in Table 6. We use the most effective video
retrieval baseline, the margin loss [43], as a baseline here.
We find that regardless of the clip duration, our approach is
preferred. As video clips become longer, the performance
gap slightly increases for base and novel activities. Overall,
we conclude that a generalization to video clips for retrieval
is viable for our approach.

Moment retrieval. Lastly, we investigate localized
video moment retrieval with our approach. We obtain tem-
poral proposals by starting from video clips and performing
a sliding window over all sets of consecutive clips exhaus-
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Figure 7: Retrieval visualization of our method. The upper part shows two successful cases while the bottom two failure cases. We eval-
uate with either a query from a base or novel class. The two successful cases demonstrate our method can tackle the different background
distractors and extract the essential information. The failing cutting the grass is distracted by green grass in distractor video, green tree in
bungee junmping, context information in mowing the lawn. The failure case in Brushing teeth contains a similar context information, while
still fails. The object recognition of cigarette, ice cream, or shaves would be helpful for the retrieval task.
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Figure 8: VR-ActivityNet statistics about the max moment
length (M) and clip length (N). We exhaustively list all possi-
ble moment temporal proposals in all videos of our dataset. A hit
occurs when the tIoU between a proposal with class C and one
ground truth proposal with class C is larger than 0.5. The best
combination is N=5, M=26, which is our default setting in mo-
ment retrieval task.

tively. We observe that such a proposal setup readily ob-
tains proposals with high recall, as shown in Figure 8. For
retrieval, we score each proposal in each video and rank
them by similarity score. Table 7 shows that our method can
also generalize to video moment retrieval with imbalanced
activities. The improvements are more marginal compared

to video and clip retrieval, since moment retrieval entails a
more difficult task due to the additional temporal localiza-
tion.

6. Conclusion

In this work we propose a new task about video re-
trieval by activity in the wild, and emphasize the impor-
tance of dealing with imbalanced data when retrieving ac-
tivities from a video query. We introduce an embedding
network that learns to balance frequent base activities and
infrequent novel activities. The network contains two novel
modules. A visual alignment module matches input videos
with visual prototype representations of activities. A se-
mantic alignment module on the other hand matches videos
with word embedding representations of activities. Visual
and semantic activity representations are of the same length,
regardless of the number of examples each activity has. As
a result, we arrive at an activity retrieval that better balances
both types of activities. We show this result empirically by
proposing a new imbalanced activity retrieval dataset with a
revised data splits. Experiments highlight the effectiveness
of our approach, as well as a series of ablations and analy-
ses to gain insight into the problem. Lastly, we show how
our approach generalizes to video clip and moment retrieval
from video queries in imbalanced settings.
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Jégou, and Cordelia Schmid. Circulant temporal encoding
for video retrieval and temporal alignment. IJCV, 2016. 1

[8] Victor Escorcia, Mattia Soldan, Josef Sivic, Bernard
Ghanem, and Bryan Russell. Temporal localization of mo-
ments in video collections with natural language. arXiv,
2019. 1, 2

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
ICML, 2017. 2

[10] Jiyang Gao, Chen Sun, Zhenheng Yang, and Ram Nevatia.
Tall: Temporal activity localization via language query. In
ICCV, 2017. 2

[11] Bharath Hariharan and Ross Girshick. Low-shot visual
recognition by shrinking and hallucinating features. In
ICCV, 2017. 2

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 4

[13] Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef
Sivic, Trevor Darrell, and Bryan Russell. Localizing mo-
ments in video with natural language. In ICCV, 2017. 1, 2,
7

[14] Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef
Sivic, Trevor Darrell, and Bryan Russell. Localizing mo-
ments in video with temporal language. arXiv, 2018. 2

[15] Elad Hoffer and Nir Ailon. Deep metric learning using triplet
network. In International Workshop on Similarity-Based
Pattern Recognition, 2015. 6

[16] Tao Hu, Pascal Mettes, Jia-Hong Huang, and Cees GM
Snoek. Silco: Show a few images, localize the common ob-
ject. In ICCV, 2019. 3

[17] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-
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