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Abstract

Few-shot learning is a nascent research topic, motivated
by the fact that traditional deep learning requires tremen-
dous amounts of data. In this work, we propose a new task
along this research direction, we call few-shot common-
localization. Given a few weakly-supervised support im-
ages, we aim to localize the common object in the query im-
age without any box annotation. This task differs from stan-
dard few-shot settings, since we aim to address the local-
ization problem, rather than the global classification prob-
lem. To tackle this new problem, we propose a network
that aims to get the most out of the support and query im-
ages. To that end, we introduce a spatial similarity mod-
ule that searches the spatial commonality among the given
images. We furthermore introduce a feature reweighting
module to balance the influence of different support images
through graph convolutional networks. To evaluate few-
shot common-localization, we repurpose and reorganize the
well-known Pascal VOC and MS-COCO datasets, as well
as a video dataset from ImageNet VID. Experiments on the
new settings for few-shot common-localization shows the
importance of searching for spatial similarity and feature
reweighting, outperforming baselines from related tasks.

1. Introduction

Convolutional networks exhibit superior accuracy in a
wide variety of computer vision challenges, but a key limi-
tation remains their hunger for labeled data [8, 33, 45]. Typ-
ically, large amounts of annotated examples are required to
achieve a high accuracy. This issue becomes even more
severe for localization tasks, which typically require addi-
tional localized annotations [31, 38, 39]. In recent years,
a new research line has emerged that strives to learn new
concepts from limited amounts of data, known as few-shot
learning [43, 48]. Though widely explored in tasks like im-
age classification, few-shot learning is rarely considered for
object localization problems.

In this paper, we propose the new task of few-shot
common-localization, which takesN support images (with-
out box annotations) and one query image as input and tries
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Figure 1. Few-shot common-localization. Starting from a few
weakly-supervised support images and a query image, we are able
to localize the common object in the query image without the need
for a single box annotation. We only know that there is a common
object, we do not know where and what the common object is.

to localize the common object in the query image guided by
the support images. Our task is demonstrated in Figure 1
for four support images and one query image. Unique to
our task is we only know there is a common class among
the support and query images, but the class itself and its
spatial extent is unknown. In practice, we can obtain query
and support images with a common class by leveraging so-
cial tags, hash tags, or an off-the-shelf image classification
network. Our method adds the bounding box for free.

We investigate this task in an attempt to alleviate the dou-
ble burden of annotation in visual localization tasks, namely
regarding the number of examples and regarding the box an-
notations for each example. This task is therefore on the in-
tersection between few-shot learning [43, 48] and weakly-
supervised detection [4, 46]. We also envision a number
of applications that arise from this task. First, few-shot
common-localization enables us to search spatially for spe-
cific instances in large and complex scenes. Second, we
can use this task to enhance other learning tasks. Few-shot
common localization can for example be used as a quick an-
notation tool or as a form of prior annotation for tasks such
as active learning [14]. Third, this approach enables easier
search in tasks such as remote sensing [32, 23].

At the core of few-shot common-localization is getting
the most out of the limited information. To that end, we
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propose a new deep network made for this task, shown in
Figure 1. First, the support and query images are fed into
a backbone network to obtain spatial features. Second, we
discover what is common among the support and query im-
ages. We propose a spatial similarity module that learns
the spatial regions of commonality through non-local oper-
ations. Third, we hypothesize that support images are not
equally important and propose a feature reweighting mod-
ule. This module employs graph convolutional networks to
balance the support images. Fourth, we use the spatial and
weight information with a class-agnostic localization net-
work to localize the object in the query image.

To experiment on few-shot common-localization, we re-
purpose and reorganize the well-known Pascal VOC 2007,
Pascal VOC 2012, MS-COCO, and ImageNet VID datasets.
Experimental results show the importance of spatial sim-
ilarity and feature reweighting for few-shot common-
localization. This results in a system that outperforms
baselines from related tasks such as object detection and
few-shot learning. The setup and method serve as a cata-
lyst for future work in this task and are all publicly avail-
able along with the code of our networks and modules at
http://taohu.me/SILCO/.

2. Related work
Object detection. Modern object detectors can be cate-

gorized into two categories: one-stage and two-stage detec-
tors. One-stage detectors such as YOLO [38] and SSD [31]
directly use the backbone architecture for object instance
detection. Two-stage detectors such as Faster R-CNN [39]
and FPN [29] first propose many possible object locations
and use a sub-network for determining and regressing the
best proposals. In this work, we rely on basic components
such as SSD [31]. Where standard object detection requires
many examples and dense annotations, we utilize such net-
works to deal with few examples and no box annotations.
Weakly-supervised object detection [4, 7, 9, 41, 46] has re-
cently been investigated for the scenario where many exam-
ples are given, but these examples are not annotated with
boxes. Compared with our method, both approaches do
not require bounding box annotations. Our method local-
izes arbitrary objects from a few support images only, while
weakly-supervised localization requires many examples per
class from a pre-defined vocabulary [17].

Object co-detection. More closely connected to the task
of few-shot common-localization is object co-detection [3,
18, 20]. Given two images with the same object, the goal
of co-detection is to localize the common instance in both
two images. This task differs from few-shot common-
localization in two aspects. First, co-detection can only
handle the scenario with two input images, while we can
handle more inputs. Second, our task evaluates few-shots
from previously unseen classes, while co-detection uses the

same classes for training and evaluation.
Few shot learning. A central task in few-shot learn-

ing is global classification [12, 28, 43, 48, 53, 51]. Ap-
proaches such as deep siamese networks [28], matching net-
works [48], and prototypical networks [43] aim to solve this
task by learning embedding spaces. The work of Garcia
et al. [12] leverages graph convolutional networks [27] for
few-shot, semi-supervised, and active learning. We are in-
spired by the success of graph convolutional networks in
few-shot settings and incorporate them in the context of
common-localization from few examples.

A number of works have investigated few-shot learning
beyond classification [6, 10, 40, 24, 34, 35, 37, 25, 26].
HU et al. [24] propose a model for image segmentation
from few examples. While effective, this work requires
dense pixel-wise annotations for the support images, same
as [40]. In this work, we relax this constraint by localiza-
tion without any spatial annotations. Dong et al. [10] study
object detection using a large pool of unlabeled images and
only a few labeled images per category. Pseudo-labels for
the unlabeled images are utilized to iteratively refine the de-
tection result. Akin to HU et al. [24], Dong et al. rely on
spatial annotations for the support examples, while we do
not utilize any box annotations for our few examples. Chen
et al. [6] construct a target-domain detector from few tar-
get training annotations by leveraging rich source-domain
knowledge. Different from their work, our method tries to
solve this problem by utilizing weak prior information of
common object existence.

Recently, object detection and segmentation have been
investigated from a zero-shot perspective [2, 13, 50]. While
promising, the results are not yet at the level of supervised
tasks, hence we do not compare to zero-shot approaches.

3. Method
3.1. Problem formulation

For our task of few-shot common-localization, the goal
is to learn a model f(SNc , Qc) that, when given a support
image set SNc of N images and query image Qc, predicts
bounding boxes for class c. The function f(�) is parameter-
ized by a deep network containing a support branch and a
query branch. During training, the algorithm has access to
a set of image tuples T = (SNc , Qc), where c 2 Ltrain .
At testing, we focus on new (unseen) semantic classes, i.e.
c 2 Ltest and Ltrain \ Ltest = ;.

3.2. SILCO network

For the problem of few-shot common-localization, we
propose the SILCO (Show a Few Images, Localize the
Common Object) network. An overview of our approach
is shown in Figure 1. Our framework starts from the Single
Shot Detector (SSD) architecture [31], using VGG [42] as
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Figure 2. Overview of the spatial similarity module, feature reweighting module, and the aggregation. The feature maps are shown as the
shape of their tensors . B, N, C denotes batch size, number of support images, and number of channels respectively. The image size is
W

0
� H

0
, the size after the backbone isW � H . GAP denotes Global Average Pooling. L denotes the number of GCN blocks. M denotes

the number of Conv2d-LReLU combinations. Graph Propagation means multiplication between vertex feature and graph adjacency matrix.

our backbone. Motivated by multi-scale fusion [29], differ-
ent scales of features are used to deal with different scales of
bounding boxes. The SILCO network facilitates the query
image to help the few shot co-localization based for the
common class given the weakly-supervised support images
at different scales, the key function is to try to integrate sup-
port feature and query feature,i.e.:

~qi = � (qi ; Si ); (1)

for query featureqi and support featureSi at scalei . In
total, akin to SSD [31], our network contains �ve scales.
Output ~qi 2 RB � C � W � H denotes the result of combining
the query and support branches. Multiple scales are utilized
to help the support branch guide the query branch. The �nal
prediction of SILCO Network is as follows:

f (q; S) = DET(CONCATi 2S ( ~qi )) (2)

where CONCAT means concatenation along channel axis,
DET is the �nal detection module used for classi�cation and
localization, andS denotes the set of scales.

There are three choices for function� in our network.
We �rst present a basic way to perform few-shot common-
localization with this network. Then we introduce two mod-
ules to best leverage the few weakly-supervised support im-
ages for common-localization.

3.2.1 A basic version: Global Average Pooling

The common object may exist in different zones in every
support image. Therefore, a starting point in the SILCO

network is to only consider the channel support and remove
spatial information,i.e.:

� (qi ; Si ) = qi +
1
N

NX

j =1

GAP(S( j )
i ) (3)

where GAP denotes global average pooling to remove spa-
tial information, enabling us to directly obtain a representa-
tion for localization. Auto Broadcasting is conducted when
shape is different. However, this setup does not fully lever-
age the few support examples we have been given. There-
fore, we introduce two new modules.

3.2.2 Spatial Similarity Module

Building upon our starting network and inspired by recent
success of the Transformer structure in language process-
ing [47] and non-local blocks [49], we have designed a spa-
tial similarity module, depicted on the right of Figure 2. The
main goal of this module is to search for spatial support be-
tween the support images and the query image.

The inputs of the spatial similarity module are the query
and support features. The outputs are spatially enhanced
query features. We investigate two ways to perform spatial
similarity. For the �rst one, the spatial similarity calculates
the inner product of the features from support and query
branch �rst, after which softmax is applied to formulate a
pixel-wise attention matrix. This matrix then is multiplied
with the support features in order to enforce a spatial simi-
larity search between support image and query image. The
overall process of this spatial similarity is formulated as:



SSMj
im (qi ; Si ) = c1(sof t (c2(qi )T � c3(S( j )

i ))

� c4(S( j )
i )) + qi ;

(4)

where c1; c2; c3; c4 are convolutional layers,sof t means
softmax activation, and� denotes matrix multiplication,
SSMj

im (qi ; Si ) denotes the spatial similarity between query
imageqi and j-th support imageS( j )

i at scale i. For sim-
plicity, some normalization operators such as Dropout [44],
Rescaling, Layer Normalization [1] are ignored here. More
details of the spatial similarity can be observed in Figure 2.
For the �nal spatial similarity, we can simply take the aver-
age over the enhanced features from all support images:

SSMim (qi ; Si ) =
1
N

NX

j =1

SSMj
im (qi ; Si ); (5)

where N is the number of support images.
The �rst image-wise spatial similarity is performed for

each support image separately. Another choice of spa-
tial similarity calculation is to considerall support images
at once (dubbed “global spatial similarity” throughout this
work). The global spatial similarity is given as:

SSMg(qi ; Si ) = c1(sof t (c2(qi )T � c3(Sc) i )

� c4(Sc) i ) + qi ;
(6)

whereSc is the concatenation of all support features. Global
spatial similarity considers all support features at once and
tries to search for the spatial similarity accordingly. The
�nal formulation of � is given as:

� (qi ; Si ) = SSMim=g (qi ; Si ); (7)

where SSMim=g (qi ; Si ) denotes the choice for image-wise
or global spatial similarity.

3.2.3 Feature Reweighting Module

The spatial similarity module incorporates spatial common-
ality between support and query images. It assumes that
each support image is equally informative for common-
localization. Here, we propose a feature reweighting mod-
ule that reweights the in�uence of examples in the support
branch by interpreting the few-shot images as a connected
graph. The weights of this graph are learned through graph
convolutional networks (GCNs). The overall structure of
the feature reweighting module is demonstrated in Figure 2.

The input of the module are the features of the support
images, the output is the weight of each support image. The
structure of the module is formulated by a GCN. First we
detail how to calculate the weight per support example, then
we detail how to conduct the feature reweighting.

Support weights. A GCN is typically fed with an input
signalx 2 RN � d on the vertices of a weighted graph G.
We consider an operator familyA of graph intrinsic linear
operators that act locally on this signal. The simplest is the
adjacency operatorA. Motivated by ResNet [21], the iden-
tity operator is also applied as a form of skip connection in
long-ranges. Therefore, we opt for the the operator family
A = f A; 1g in our work. A GCN receives a feature input
x (k ) 2 RN � dk and producesx (k+1) 2 RN � dk +1 , which
can be formulated as:

x (k+1)
l = gcn(�) = � (

X

F 2A

Fx (k ) � (k )
F;l ); l = d1; :::; dk+1

(8)
where� = � (k )

1 ; :::; � (k )
jAj k

; � (k )
F;l 2 Rdk � dk +1 , are train-

able parameters and� (�) is a point-wise non-linearity,
LReLU [52] in our work. Furthermore, the graph adjacency
matrix in adjacency operatorcan also be learned from the
current node hidden representation [15]:

~A (k )
i;j = ' ~� (jx (k )

i � x (k )
j j); (9)

where' is a symmetric function that can be parameterized
by a neural network, the neural network is stacked after the
absolute difference between two vector nodes. To obtain the
feature weight, Eq. 8 will be cascaded for L times to capture
the long-range connection in the graph. In the end, inspired
by SENet [22], a sigmoid layer is appended to generate �nal
weight. The detail can be formulated as:

FRM(S) = � (gcn(� � � gcn(S))) ; (10)

where� is a sigmoid layer, and the output represents feature
weight for every support image FRM(S) 2 RB � N .

Feature Reweighting. To combine the features from
the spatial similarity module and the weights from the fea-
ture reweighting module, we multiply them both the feature
image-wise. In the end, by utilizing the Equation 4,� can
be further formulated as:

� (qi ; Si ) = RS(CONCATN
j =1 (SSMj

im (qi ; Si )) 
 FRM(Si )) ;
(11)

where SSMj
im (qi ; Si )) is spatial similarity between

query imageqi and j-th support imageSi at scale i,
FRM is feature reweighting module,
 is hadamard
product(broadcasting is ignored if shape mismatches),
CONCAT is the concatenation operation, which is a map-
ping fromRB � C � W � H to RB � N � C � W � H . The �nal RS
denotes the reducesum operation that eliminates the second
dimension and leads toRB � C � W � H .

3.2.4 Optimization

Similar to the framework of SSD, our loss function is also
composed of a bounding box regression loss and a cross



entropy classi�cation loss. The difference is that our clas-
si�cation is class-agnostic, it depends on the common class
of the support images and query image.

L (x; c; l; g) =
1

BD

B;DX

i;j =1

(bce(cij ; x ij ) + `s
1(l ij ; gij )) ;

(12)
where B is the batch size, D is the number of matched de-
fault boxes,bce means binary classi�cation entropy loss
function, `s

1 denotes smoothed̀1 norm loss function [16].
cij ,x ij , l ij , gij are the class probability, class ground truth,
predicted coordinate, ground truth coordinate of i-th image,
j-th bounding box proposal, respectively.

4. Experimental setup

4.1. Common­localization datasets

To accompany the new task of few-shot common-
localization, we have prepared a revised setup for three
well-known datasets intended for object detection, namely
Pascal VOC [11], MS-COCO [30], and ImageNet VID [8].

CL-VOC. We divide the 20 classes of PASCAL VOC
into two disjoint groups, one group is used for training, the
other for validation/testing. We use both groups for both
tasks and report the mean performance of the two runs. We
perform experiments both on Pascal VOC 2007 and 2012,
dubbed CL-VOC-07 and CL-VOC-12 respectively. The
training setD train is composed of all image pairs from the
PASCAL VOC training set that include one common class
from the label-setL train . The validation setD val and test
setD test are both from the PASCAL VOC validation set.
For a detailed explanation of our dataset organization pro-
cedure, please refer to the supplementary materials.

CL-COCO. We furthermore recompile a common-
localization dataset based on the MS-COCO 2014
dataset [30]. The 80 classes in MS-COCO are divided into
two disjoint groups. The classes in each group are provided
in the supplementary materials.

CL-VID. To evaluate a generalization to videos, we em-
ploy the ImageNet VID dataset [8], a benchmark for video
object detection. We use the 3,862 video snippets from the
training set for evaluation, which includes 30 objects. We
employ this dataset to evaluate our approach on open-set
(i.e., unseen) classes. We train our model on CL-VOC-12.
There are some overlapping classes between Pascal VOC
and ImageNet VID. We keep videos which have one target
class and no overlap with any Pascal VOC class. For details
on the retained classes, please refer to the supplementary
materials. The support images are selected from ImageNet
DET [8] for evaluation. Each frame of a test video acts as
query image.

Table 1.Spatial similarity module. Mean average precision (%)
for image-wise versus global spatial similarity on CL-VOC-12.
For both groups, image-wise similarity works better and we will
use this form of spatial similarity for further experiments.

Group 1 Group 2 mean
Global 51.71 55.49 53.60

Image-wise 54.04 57.39 55.71

4.2. Implementation details

We use PyTorch [36] for implementation. The network
is trained with SGD [5] with a learning rate of 1e-4 and mo-
mentum of 0.99 on one Nvidia GTX 1080TI. The weights
of the support and query branch are pre-trained on Ima-
geNet [8]. All the images in the support and query branch
are resized to300� 300and the batch size is set to 6. For
the query branch we choose photo-metric distortion, ran-
dom mirror, random sample crop, akin to SSD [31].

4.3. Evaluation

For the training tuples, we randomly sample tuplesT =
(SN

c ; Qc), such that all tuples contain the common classes
c 2 L train . For evaluation, we randomly sample several
tuplesT = ( SN

c ; Qc), which contain the common class
c 2 L test . We evaluate on 5000 tuples in CL-VOC and
10000 tuples in CL-COCO. Our training, validation, and
test images are always disjunct. The object classes in train-
ing are disjunct from those in validation/test. The hyperpa-
rameter search is done once on Group 1 of CL-VOC-12. We
use the same hyperparameters for all experiments on CL-
VOC-07, CL-VOC-12, CL-COCO, and CL-VID. On the re-
spective validation sets we choose the best model.

We employ the (mean) Average Precision as evaluation
measure throughout our experiments. The overall mAP is
averaged on the mAPs of the two groups and computed us-
ing the setup of [11]. For evaluation we only consider the
top 200 detected bounding boxes, and rank these boxes ac-
cording to their objectness score. Each prediction that over-
laps with the closest ground truth with a value of at least 0.5
will be regarded as a positive detection. After that, a non-
maximum suppression with a threshold of 0.45 is applied.

5. Experimental results

5.1. Ablation study

Spatial similarity module. In the spatial similarity
module, there are two ways to relate features from the sup-
port and query branches. The �rst, image-wise spatial sim-
ilarity, computes a matrix of sizeHW � HW for each
support image. The second, global spatial similarity, com-
putes a single matrix of sizeHW � NHW , which regards
all N support images as a whole to the spatial similarity.
We compare the two different forms of similarities in Ta-



Figure 3.Spatial similarity module visualization. Two examples are demonstrated, the left is the query image, the top, bottom images are
image-wise similarity visualization and global similarity visualization respectively. For image-wise similarity, the top 20 activations are
visualized per image. For global similarity, the top 100 activations are visualized in all 5 images. The green dot in the query image is the
reference point. The green dots in the support images are calculated based on the reference point in the query image. Best viewed in color.

Table 2.Ablation of spatial similarity and feature reweight-
ing. The metric is mean average precision (%). As we adopt spa-
tial similarity (SSM) and feature reweighting (FRM) the accuracy
gradually increases over a simple global average pooling (GAP),
indicating the effectiveness of our proposed modules.

dataset GAP SSM FRM Group 1 Group 2 mean

CL-VOC-07
! 55.17 52.18 53.67

! 56.12 55.52 55.82
! ! 57.17 56.45 56.82

CL-VOC-12
! 53.55 54.61 54.08

! 54.04 57.39 55.71
! ! 55.11 58.62 56.86

CL-COCO
! 13.37 6.50 9.94

! 18.50 7.70 13.10
! ! 18.62 8.20 13.40

ble 1. We observe that image-wise spatial similarity out-
performs global spatial similarity. Our hypothesis is that
image-wise spatial similarity more explicitly exploits the
prior knowledge of the common-localization task that all
support images are of the same class. To highlight this abil-
ity of image-wise spatial similarity, we visualize the top ac-
tivation pixels in Figure 3. We �nd that image-wise spa-
tial similarity balances the attention of every support image,
while global spatial similarity exhibits a less uniform atten-
tion distribution. For the bird example, the global similarity
misses the common object in the �rst and fourth support im-
age, while many irrelevant areas in the second support im-
ages are targeted. Based on this study, image-wise spatial
similarity will be adopted for the rest of the experiments.

Feature reweighting module. We also explore the ef-
fect of feature reweighting based on the previous results.
The ablation result is indicated in Table 2. We �rst ob-
serve that spatial similarity outperforms the global average
pooling baseline, further validating its effectiveness. Across
all three datasets, adding feature reweighting on top of the
spatial similarity bene�ts the common-localization accu-
racy. To better understand the inner mechanism of feature

Figure 4.Feature reweightingheatmap visualization (blue means
low, red means high). The �rst row shows the support images, the
second row shows the query image with ground truth (blue box)
and prediction (red box), the bottom row shows the heatmap visu-
alization. The heatmaps are the normalized feature map selected
from the output of our network. For both examples, the left and
right columns show the results with and without feature reweight-
ing. The heatmap results show that feature reweighting can better
highlight the areas containing the common object. Label infor-
mation is only used for illustration here, we don't utilize them in
experiment.

reweighting, we visualize the feature heatmaps before and
after feature reweighting in Figure 4. The �gure shows that
the reweighted features better focus on the common class to
further enhance the common-localization.

Effect of support images.Our common-localization is
optimized to work with few examples as support. To show
this capability, we have explored the effect of gradually in-
creasing the number of support images in Figure 5. We have
evaluated with 3, 5, 7, and 9 support images. The results
show that our approach obtains high accuracy with only
a few support images. As the number of support images
increases, the gap of our approach with and without spa-
tial similarity and feature reweighting gradually becomes
larger, which indicates that our modules can capture the


