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Task Introduction Gradually Increasing Shot-Number

shot number increases from 1 to 5
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(1). We first propose a Multi-Context Guiding
structure to fuse the small-to-large scale context

features between support branch and query High

branch to globally guide the query branch

segmentation. > Validate Attention Mechanism qualitatively and
quantitively.

(2). We introduce a Residual Attention
Module(Wang et al. 2017) in our MCG network Multi-shot fusion by ConvLSTM
to realize the attention mechanism in few-shot

learning of segmentation.
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(3). We embed the Conv-LSTM (Xingjian et al. 685 1| ==Loss ConvLSTM

—eo— k-loss ConvLSTM

2015) module into the end of our network to
better merge the feature map from support set in
multi-shot semantic segmentation.

validation mloU

(4). Compared with previous methods, our A-
MCG reaches state-of-the-art 61.2%, 62.2%
measured in mloU in 1-shot and 5-shot setting. 650
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> Multi-shot fusion works better than “logical or”.
> K-loss performs better than1-loss ConvLSTM.




